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Abstract: Hailstorms cause significant economic losses worldwide, and the central United 
States is particularly vulnerable due to increasing hailstone size linked to climate change. 
Cloud seeding, a weather modification technology, has been widely adopted for hail 
suppression in over 50 countries since the 1970s. While existing research predominantly 
focuses on hailstone size and frequency, its effects on crop damage and productivity remain 
understudied. This study evaluates the effectiveness of cloud seeding in Kansas using 
county-level data from 2002 to 2020, considering a broader set of measurements: hail size, 
hail frequency, crop damage, crop yields, and potential downwind effects. The findings 
reveal that cloud seeding reduces hailstone size in target areas but does not significantly 
decrease crop damage from hail or drought. Conversely, it is associated with increased 
flooding damage to crops. Additionally, cloud seeding enhances corn productivity in target 
areas but negatively affects sorghum productivity in downwind regions, suggesting 
potential spillover effects. A cost-benefit analysis indicates that while the overall net 
present value of the Kansas cloud seeding program is positive, some downwind counties 
experience negative net benefits. These findings challenge the conventional evaluation 
metrics of cloud seeding programs and underscore the need for a holistic approach to assess 
their effectiveness. Policymakers should consider these insights to improve program design, 
mitigate adverse effects, and enhance technology management. This study contributes to 
understanding the complexities of weather modification programs and provides evidence 
to guide future policy decisions on hail suppression.

Keywords: cloud seeding, weather modification, hail suppression, crop damage, 
spillover effects, downwind effects, cost-benefit analysis
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I. Introduction

Hailstorms cause tremendous economic losses in the United States (US) and across 

the globe. From 2003 to 2023, severe hailstorms caused $35.8 billion in losses in the US 

(NOAA, 2024)1. Moreover, hailstone size may increase in the central US and could 

potentially cause more damage in the future, according to meteorological simulations (Fan 

et al., 2022).

To mitigate hail damage, more than 50 countries around the globe have adopted 

weather modification programs, more specifically, cloud seeding, for hail suppression 

purposes since the 1970s, including the US, Russia, France, Argentina, etc.2 The 

microphysical process of hail formation is extensively discussed in the literature (Lamb 

and Verlinde, 2011; Allen et al., 2020; see section II for more details). The main idea of 

cloud seeding for hail risk reduction is to launch chemical particles into clouds, thereby 

reducing the frequency and magnitude of hailstones (Knight, 1977). 

Most existing research on the effectiveness of cloud seeding programs evaluates 

factors such as the size and volume of hailstones, the frequency of hail events, and the 

distribution of hailstone sizes over a certain period (Bergant, 2011; Changnon, 1971; 

Dessens et al., 2016; Gavrilov et al., 2013; Rivera et al., 2020; Spiridonov et al., 2015). 

Among these studies, the intensity of hail is often measured by the size of the hailstones, 

as smaller hailstones, which have less kinetic energy, are associated with less damage to 

crops, livestock, property, and even humans (Pirani et al., 2023; Púčik et al., 2019).

However, the relationship between the size of hailstones, frequency of hail events, 

and crop damage is not yet clear. In the literature, there are relatively few studies that 

examine the effect of cloud seeding hail suppression in reducing crop loss, but more studies 

on direct property damage (Allen et al., 2020; Changnon & Changnon, 2000; Childs et al., 

2020). Childes et al. (2020) conducted interviews with farmers, revealing that most farmers 

worried about small-size large-volume hailstones more than large-size hailstones. Also, 

1This number represents the costs attributed solely to hailstorms, although instances of tornado outbreaks, 
high winds, and hailstorms often occur concurrently. Furthermore, disaster costs in NOAA reports 
encompass damages to residential and commercial properties (including buildings, vehicles, and boats), 
infrastructure (such as roads, bridges, and electrical facilities), agricultural assets (including crops, 
livestock, and timber), as well as losses related to business interruptions.  
2 See World Meteorological Organization: https://public-old.wmo.int/en/resources/bulletin/seeding-change-
weather-modification-globally 
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Púčik et al. (2019) indicate hailstones size of 2 to 3 centimeters (around 1 inch) in diameter 

damage crops most. Therefore, measuring hailstone size and the frequency of hail events 

might not be an appropriate approach for evaluating hail suppression program effectiveness. 

In other words, cloud seeding might reduce the frequency and magnitude of hailstones but 

could potentially cause more damage. The effectiveness of cloud seeding on crop loss 

remains ambiguous.3 

Only a few studies examine the effectiveness of hail suppression programs on crop 

damage and productivity. Soviet scientists provided hail suppression by launching rockets 

into clouds, reporting a 50% to 90% reduction in crop hail damage (Federer et al., 1986). 

Abshaev et al. (2023) indicated that over the past 65 years, Russia improved its rocket 

seeding technology, thereby reducing hail crop damage by as much as 86%. In the US, 

Knowles and Skidmore (2021) found that cloud seeding in North Dakota resulted in a 13% 

increase in wheat yields per harvested acre and a 0.548 decrease in the wheat loss ratio in 

North Dakota. According to research by Ekland et al. (1999), cloud seeding reduced the 

crop loss ratio by 27% in Kansas and minimized damaged planted areas by 34% to 48%.

One concern regarding cloud seeding for hail suppression is the potential reduction in 

rainfall in downwind areas. When a downwind region receives less precipitation or more 

hailstones after cloud seeding in the target areas, it is referred to as the downwind effect. 

This effect has been a concern for northwest Kansas counties that terminated cloud seeding 

programs. However, while the downwind effect has been discussed in the context of cloud 

seeding for rain enhancement purposes, it has not received much attention in the hail 

suppression context (Solak et al., 2003; DeFelice et al., 2014; Wang et al., 2019). Only a 

few studies have explored the potential rainfall changes in hail suppression areas. For 

example, the Kansas Water Office, responsible for cloud seeding operations in Kansas, 

reported a decrease of 0.25 inches in average precipitation during the growing season in 

the targeted areas (Eklund et al., 1999). Conversely, in Alberta, there was a 2.2% increase 

in rainfall in hail suppression areas (Krauss and Santos, 2004).

When policymakers decide whether to continue a policy, providing an evaluation of 

3 The relationship between hail magnitude and damage also depends on growth stage of crop, canopy position 
of crops, weather, and water management (Holman et al., 2022). For example, cotton is more vulnerable to 
hail in the bud stage than in the boll stage (McGinty et al., 2019; Yue et al., 2019).
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its efficacy is crucial. In the literature, the most common measurements are the size of 

hailstones and the frequency of hail events. In this study, we use a broader set of 

measurements to evaluate the efficacy of the cloud seeding program, including its impact 

on hailstone size and frequency, crop damage, and crop yields, while also considering 

potential downwind effects. The purpose is to evaluate the degree to which choosing 

different measurements may lead to different conclusions. When different measurements 

yield conflicting conclusions, it can spark discussions and encourage collaboration to 

improve the technology or management of the program.

Kansas serves as a fitting focal point for this analysis due to its status as a prominent 

producer of winter wheat, corn, and sorghum in the US, and the significant hail damage 

experienced by its crops. We use county level data over the 2002-2020 period for Kansas 

in this paper. As a prelude to the full set of findings, the analysis shows that cloud seeding 

is associated with reductions in hail size in target areas. Even though the size of hailstones 

decreases, there are no statistically significant reductions in hail or drought damage. 

However, the results indicate that cloud seeding is associated with more flooding damage 

to crops. This finding is consistent with the literature that severe rain or inundation can 

occur in target areas after cloud seeding (Almheiri et al.,2021; Spiridonov et al., 2015; 

Tuftedal et al., 2022; Yoo et al., 2022). Lastly, the findings indicate that cloud seeding 

enhances corn productivity within the seeding area but diminishes sorghum productivity in 

downwind areas. Leveraging these outcomes, we conduct a cost-benefit analysis of the 

Kansas cloud seeding program. While the overall net present value of the program is 

positive, it is essential to recognize that this is not universally beneficial; certain counties, 

particularly those downwind, exhibit negative net present values.

The remaining sections of this paper are structured as follows: Section II provides an 

introduction to cloud seeding in Kansas. The methodology and data are outlined in Sections 

III and IV, respectively, followed by the presentation of results in Section V. Section VI 

presents the cost-benefit analysis. Finally, conclusions and policy implications are 

discussed in Section VII.
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II.Background

This section begins with a discussion of the primary rationale behind considering 

cloud seeding as a promising method of reducing hail. We also provide an overview of 

research findings related to cloud seeding efficacy. The section concludes with a detailed 

discussion of the Kansas cloud seeding project.

(1) Cloud seeding for hail suppression  

The hail formation process is well-documented in the literature (Allen, 2020). Two 

primary components are essential for hailstone production: supercooled water and embryos. 

Supercooled water refers to liquid water persisting below the freezing point of pure water 

for an extended duration. This phenomenon often occurs in convective cloud systems 

where updrafts bring cloud condensation nuclei (CCN) into the cloud. Condensation of 

water vapor on these CCNs results in the formation of supercooled water droplets.

The merging of supercooled water droplets, typically due to contact with embryos, 

initiates a chain reaction of freezing processes, leading to the formation of hailstones. Small 

hailstones may revert to embryos, attracting more supercooled water, sustaining the 

freezing process, and allowing for further growth. Hailstones eventually fall when they 

reach a size too substantial to be supported within the clouds.

According to microphysical theory, the core concept behind cloud seeding is to 

stimulate beneficial competitiveness processes. This theory posits that natural embryos in 

clouds, such as dust or pollen, may not be plentiful enough. Consequently, the introduction 

of artificial embryos, like silver iodide or dry ice, can compete with natural embryos, 

preventing the overharvesting of supercooled water droplets by natural embryos. The 

expected result is that all hailstones should be smaller than those without seeding. Smaller 

hailstones have the potential to melt before reaching the ground, effectively mitigating 

potential hail damage.

The promise of controlling hail damage through cloud seeding led to extensive 

investigations dating back to the 1970s. During this period, several multi-year projects 

aimed to explore the beneficial competitiveness hypothesis and assess the feasibility of 

cloud seeding technology.

From 1972 to 1976, the National Hail Research Experiment (NHRE) spanned multiple 

states in the US, including Northeast Colorado, Kansas, Nebraska, and Wyoming. However, 
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the results revealed no statistically significant effects in reducing the frequency and size of 

hail (Allen et al., 2020; Foote et al., 1979; Knight and Squires, 1982; Squires and Knight, 

1982). Subsequent to NHRE, from 1977 to 1982 Switzerland, Italy, and France initiated 

the Grossversuch IV project to test Soviet hail suppression technology. Similar to the 

NHRE, the results demonstrated no statistically significant difference in hail frequency and 

magnitude between seeded and non-seeded areas (Federer et al., 1986). A reexamination 

of the Grossversuch IV project data by Auf der Maur and Germann (2021) even suggested 

that cloud seeding might increase the kinetic energy of hailfall, potentially intensifying 

damages.

Despite inconclusive results from experimental projects, countries worldwide 

persisted in their investment in cloud seeding for hail suppression. Real-world seeding data 

played a pivotal role in evaluating the efficacy of these programs. In Slovenia, Serbia, and 

Argentina, no statistically significant changes were observed in either the frequency or 

magnitude of hailstorms (Bergant, 2011; Gavrilov et al., 2013; Rivera et al., 2020). Greece 

and Spain witnessed a reduction in hailstone magnitude without a significant impact on 

frequency (Spiridonov et al., 2015; Dessens et al., 2016). In contrast, A study in France 

indicated that cloud seeding resulted in a substantial decrease in both the frequency and 

magnitude of hailstones (Changnon, 1971). These diverse outcomes highlight the 

complexity and variability in the effectiveness of cloud seeding initiatives across different 

geographical regions. 

(2) Weather modification in Kansas: A four-decade cloud seeding initiative 

Cloud seeding has been a cornerstone of weather modification efforts in the US for 

six decades. Among the states actively adopting cloud seeding, Kansas, along with North 

Dakota and Texas, stand out, implementing this technique primarily during the warm 

season4. The focus in these states has been on hail suppression and rain enhancement, with 

occasional applications for fog dispersion.

4 Several states in the US have implemented cloud seeding during different seasons and for various 
purposes. States such as California, Nevada, Idaho, Utah, Wyoming, and Colorado employ cloud seeding in 
the cold season for snowpack augmentation and rain enhancement, with primary objectives aimed at 
increasing water storage in reservoirs and replenishing groundwater. While cloud seeding has been proven 
to increase rainfall and runoff by an average of 10% to 20% (Rosenfeld and Woodley, 1989; Bruintjes, 
1999; Flossmann et al., 2019), its efficacy for hail suppression remains a subject of controversy.
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To emphasize the risk and exposure to hail, Figure 1 illustrates the distribution of 

severe hail—defined as hailstones over 1 inch (25.4 mm) in diameter—across the US5. The 

map depicts the significant threat posed by hazardous hail events, particularly in the Great 

Plains region, including Kansas. In 2022 alone, Kansas experienced 289 major hail events, 

ranking it fourth among states in hailstone frequency after Texas, Nebraska, and Minnesota. 

This highlights the pressing demand for effective measures to abate the costly impact of 

severe hailstorms6.

Among the states, Kansas leads in winter wheat and sorghum production in the US 

and ranks among the top ten states for corn production. Agriculture contributes $81 billion 

to Kansas's economy, with approximately 88% of the state's land dedicated to farmland for 

crops and livestock. According to the Kansas Crop Planting Guide7, winter wheat should 

be planted from mid-September to late October, varying depending on geographic zones, 

with harvest taking place the following summer. Corn and sorghum are typically seeded 

between late April and mid-May. However, vulnerability to hailstorms, prevalent from 

April to September, poses a threat to the pre-mature stages of wheat and silk corn, leading 

to potential crop yield losses. The rapid onset of damage within minutes makes cloud 

seeding programs desirable in Kansas to mitigate forecasted crop-damaging hail.

The Kansas Water Authority is the key entity managing the cloud seeding program in 

Kansas8. In the 1990s, the western part of Kansas was the primary target for cloud seeding. 

However, a five-year program faced suspension due to protests led by the grassroots group, 

Citizens for Natural Weather9. Their opposition was not rooted in doubts about hail 

suppression efficacy but in concerns that seeding clouds might alter local and adjacent 

precipitation patterns. In 1999, four northern Kansas counties voted to withdraw from the 

cloud seeding program. The present study focuses on the southwestern part of Kansas, 

where 14 counties agreed to participate in the cloud seeding program in 2002 as shown in 

Figure 2 (blue area).

5 The National Centers for Environmental Information (NCEI) identifies severe hail based on the diameter 
of hailstones. Appreciable damage occurs only when the diameter is over 1 inch (25.4 mm). The threshold 
for damaging hail size was adjusted in 2010 from 19.1 mm to 25.4 mm, as suggested by stakeholders 
(NCEI, 2009). It's worth mentioning that larger hailstones tend to be less spherical (Allen, 2020).
6 See: https://www.iii.org/table-archive/22795.
7 See: https://bookstore.ksre.ksu.edu/pubs/l818.pdf. 
8 Kansas Water Authority is within and as part of the Kansas Water Office.
9 See: https://www.latimes.com/archives/la-xpm-2000-jun-11-mn-39711-story.html 
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The Kansas Water Office executed an Operational Plan for the Weather Modification 

Project, where the project manager made daily seeding decisions based on the Operation 

Plan and meteorological data during the program’s active period10, typically from April to 

September. On a daily basis, the project manager assesses all available data to determine 

the seedability of incoming clouds. If a seeding decision is made, the project manager 

contacts the pilot and crew to confirm the seeding strategy. Following mission completion, 

pilots report cloud responses and data to the operation center for analysis. The Operation 

Plan acknowledges the potential spillover effect in adjacent areas, impacting not only the 

downwind but also the upwind areas, with buffer zones set at 25 and 10 miles, respectively.

Cloud seeding programs in Kansas have dual objectives, focusing on both hail 

suppression and rain augmentation. According to the Operation Plan, hail suppression 

generally takes precedence over rain augmentation. However, adjustments are made based 

on soil moisture levels and crop growth stages, with priority given to areas vulnerable to 

hail risks. Additionally, when a convective cloud system is unstable, the seeding mission 

shifts from rain augmentation to hail suppression. Operation records align with the 

Operation Plan, revealing that from 2002 to 2020, cloud seeding days were 65% for hail 

suppression and 35% for rain augmentation, as illustrated in Figure 3. Nevertheless, the 

number of counties participating in the cloud seeding project has declined over time, with 

no Kansas counties in the program since 2017 (see Figure 4). As of 2022, Kansas is no 

longer affiliated with the North American Weather Modification Council.

10 Meteorological data comprise hourly observations, aviation terminal forecasts, severe weather warnings, 
synoptic surface and upper air analyses, storm data within the operational area, and satellite imagery.
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III. Methodology

The Kansas cloud seeding program is a jointly funded initiative involving the state 

and county governments, with the state contributing $240,000 annually for radar systems 

and counties determining their participation and funding based on population. Using a 

framework adapted from Hettich and Winer (1984, 1988) and Brien and Eger III (2021), 

the decision-making process is modeled as a competitive dynamic where governments aim 

to minimize their contributions while ensuring public good provision, driven by officials 

seeking to maximize voter support rather than acting altruistically. Readers can find full 

model in Appendix A. 

Based on the model, three major hypotheses are tested in this study: 

Hypothesis 1: Based on the concept of beneficial competition (Detwiler, 2002), 

participation in a cloud seeding program reduces the frequency and intensity of hailstorms 

in the target area.

Hypothesis 2: Participation in a cloud seeding program reduces hail damage to crops in 

target areas.

Hypothesis 3: A spillover effect exists in cloud seeding programs for hail suppression and 

rain enhancement in downwind areas. 

The main idea of cloud seeding program as a damage control agent is based on the 

concept of beneficial competition (Detwiler, 2002). It assumes that hailstorm frequency 

and magnitude are functions of cloud seeding, where artificial embryos are introduced into 

the clouds to compete with natural embryos in supercooled water. The result is an increased 

production of smaller hailstones that hopefully melt before hitting the ground.  Additionally, 

we test for the presence of and determine whether spillovers are positive or negative. 

Consequently, cloud seeding potentially reduces crop damage.

To achieve this goal, panel data and the specification presented in equation (1) are 

employed. In equation (1), 𝑚𝑖 controls the characteristics of county i that do not vary over 

a short period, such as altitude, referred to as county-fixed effects. Additionally, 𝜆𝑡 

represents time fixed effects, which is included in the model to account for unobserved, 

time-specific factors—such as El Niño—that could influence the dependent variable across 

all counties. . Controlling for county and time effects helps to insure the comparability of 

all observations. 
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𝑌𝑖𝑡 = 𝛼 ∙ 𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑖𝑡 + 𝛽 ∙ 𝑈𝑊𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑗𝑡 +γ ∙ Χ𝑖𝑡 + 𝑚𝑖 + 𝜆𝑡 + 𝜇𝑖𝑡           (1)

𝑌𝑖𝑡 represents a set of outcome variables in county i in year t. We examined several outcome 

variables that include hail frequency, hail magnitude, crop damage, and crop production. 

The variable 𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑖𝑡 denotes the cloud seeding program participation in county i in year 

t, where 1 indicates participating in cloud seeding program, and 0 otherwise. The parameter 

𝛼 captures the marginal effect of the cloud seeding program participation on outcome 

variables. Additionally, 𝑈𝑊𝑠𝑒𝑒𝑑𝑖𝑛𝑔𝑖𝑡 denotes the seeding decision in upwind county j of 

county i in year t, with 1 indicating seeding and 0 otherwise. The parameter 𝛽 captures the 

spillover effect on outcome variables from the upwind seeding county on downwind county. 

The vector 𝑋𝑖𝑡 includes covariates such as moisture and temperature, will be discussed 

further in the Data section below. Finally, 𝜇𝑖𝑡 denotes the error term.

IV. Data

For testing the hypotheses presented above, data from various sources are compiled:

(1) Cloud seeding data

The cloud seeding data used in this study are derived from the National Oceanic and 

Atmospheric Administration (NOAA). In compliance with Federal Law11, all weather 

modification activities are mandated to submit weather modification project reports to 

NOAA. For the Kansas cloud seeding program, based on cloud conditions the program 

operator will call the pilots to standby for data collection or seeding missions. Once the 

pilots seed the clouds, it will be recorded in the NOAA report. Even if a hailstorm travels 

into a non-participating county, the program operator cannot require the pilot to execute a 

seeding mission beyond the boundary of the participating county. Therefore, cloud seeding 

activities only occur within the boundaries of participating counties. The dataset spans from 

2002 to the present and includes information on the counties participating in cloud seeding 

program.

(2) Hailstorm and weather data

Hailstorm data is obtained from the Next Generation Weather Radar (NECRAD). This 

dataset provides comprehensive information about the location and magnitude of each 

hailstorm. The frequency of hail is determined by the total number of hailstorms that 

11 Public Law 92-205, or “Weather Modification Reporting Act of 1972”.
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occurred during the growing season. The dataset spans from 1955 to 2022 and is aggregated 

at the county level during the growing season.

Other weather-related data are extracted from the NOAA Climate Data Online (CDO) 

dataset, which comprises weather observations from various stations. Data for each county 

are aggregated from various stations within the county. The dataset includes information 

such as maximum and minimum temperatures. From these data, we computed Growing 

Degree Days (GDD) and Stress Degree Days (SDD) during the growing seasons, from 

April to September, using the following formula:

𝐺𝐷𝐷 = max (0, 
𝑇𝑚𝑎𝑥 + 𝑇 𝑚𝑖𝑛

2 ― 𝑇𝑏𝑎𝑠𝑒)

For GDD, the equation considers the daily mean temperature, calculated as the average of 

the daily maximum temperatures, 𝑇𝑚𝑎𝑥, and minimum temperatures, 𝑇𝑚𝑖𝑛. 𝑇𝑏𝑎𝑠𝑒 represents 

the base temperature for crop growth, which varies by crop type. Specifically, it is set at 

40 degrees Fahrenheit for winter wheat (McMaster and Smika, 1988) and 50 degrees 

Fahrenheit for corn (Cross and Zuber, 1972).  If the mean temperature falls below base 

temperature, GDD is set to zero. The GDD accumulates throughout the growing season. 

Based on the empirical strategy, we calculated three distinct GDD values for winter wheat, 

sorghum, and corn. When estimating the impact on crop productivity, we used crop-

specific GDD for each crop. For analyzing the impact on crop damage, we chose a base 

temperature of 40 degrees Fahrenheit, given that winter wheat is the predominant crop in 

Kansas. This explanation is also included in the section describing the GDD calculation.

For SDD, the formula involves subtracting the upper temperature threshold 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

from the daily maximum temperature 𝑇𝑚𝑎𝑥. If 𝑇𝑚𝑎𝑥 is below 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, SDD is set to zero. 

The upper temperature threshold is consistent at 86 degrees Fahrenheit for all crops (Cross 

and Zuber, 1972). When temperatures exceed 86 degrees Fahrenheit, crops may either 

cease growth or incur damage.

𝑆𝐷𝐷 = 𝑚𝑎𝑥 (0, 𝑇𝑚𝑎𝑥 ― 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

On a different note, crop growth relies on adequate moisture. The Palmer Z index, a 

measure of moisture deviation from normal climate on a monthly basis, is employed. This 
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index, obtained from NOAA12, distinguishes between wet and dry conditions. Following 

Knowles and Skidmore (2021), the variables for dryness 𝐷𝑟𝑦𝑖𝑡 and wetness 𝑊𝑒𝑡𝑖𝑡 are 

calculated as: 

𝐷𝑟𝑦𝑖𝑡 = ―min (0, 𝑃𝑍𝑖𝑡)

𝑊𝑒𝑡𝑖𝑡 = 𝑚𝑎𝑥 (0, 𝑃𝑍𝑖𝑡)

A higher count of 𝐷𝑟𝑦𝑖𝑡/𝑊𝑒𝑡𝑖𝑡, indicating a greater deviation from the normal climate, 

indicates drier/wetter conditions in the county during the growing season. According to 

NOAA, if 𝐷𝑟𝑦𝑖𝑡 falls between 0 and 1.24, it indicates a normal climate, while a value above 

2.75 indicates extreme drought. Similarly, if 𝑊𝑒𝑡𝑖𝑡 falls between 0 and 0.99, it indicates a 

normal climate, and a value above 3.50 indicates extreme wetness. From Table 1, on 

average, the moisture in Kansas during growing seasons is near normal. 

(3) Crop data

Crop indemnity data is obtained from the USDA Risk Management Agency Cause of 

Loss Historical Data Files. These data provide information on indemnity payments and loss 

ratios for different perils, including hail, drought, and excess moisture (i.e. flood)13. The 

crop loss ratio is defined as the total indemnity divided by the total premium. The total 

premium comprises the premium paid by farmers plus public subsidy. The target crop loss 

ratio for US crop insurance is 0.88, indicating that the insurance company retains 12% of 

the premium to cover unexpected shocks. If the loss ratio exceeds 1, the insurance company 

is in an unsustainable situation. Additionally, crop yield data for winter wheat, corn, and 

sorghum, the top three major crops in Kansas, are included in the analysis. The crop yield 

data are measured in bushels per acre and are sourced from the USDA14.

(4) Wind direction data

The wind direction data is obtained from the National Aeronautics and Space 

Administration Land Data Assimilation System 2 (NLDAS-2) dataset, with a resolution of 

0.25 degrees15. Using QGIS version 3.32.3, wind speed and directions were calculated 

12 See https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/
13 In Kansas, 35.8% of indemnity is due to drought, 17.5% due to flood, and 8.2% due to hail.
14 See USDA National Agricultural Statistics Service: https://quickstats.nass.usda.gov/
15 1 degree is equal to 69 miles.
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based on zonal velocity (U wind) and meridional velocity (V wind)16. In Kansas, the 

prevailing wind during the growing seasons (April to September) generally comes from 

the west, as depicted in Figure 5. This wind direction data is crucial for identifying 

downwind areas.

Table 1 presents a summary of descriptive statistics. The data gathered from various 

sources form an unbalanced panel, so the observation numbers differ for each variable. The 

maximum recorded hail frequency is 94, indicating that 94 hailstorms were observed in 

one county during the growing season (April to September), with an average of 10.32 

hailstorm occurrences during the growing season. Furthermore, the magnitude of 

hailstorms is evaluated based on the diameter of hailstones. On average, the diameter of 

hailstones is 1.13 inches, which exceeds the threshold that causes damage to crop plants. 

The largest hailstone recorded during the period of analysis in Kansas is 3 inches. 

Additionally, note that the loss ratios for different perils are above 0.88, the design ratio of 

the USDA. This suggests that the indemnity caused by extreme weather events might be 

underestimated, and the premium may not be sufficient to cover the indemnity. Table 2 

summarizes the definitions and data sources of the variables used in this study.

16 The wind data from NASA is 10 meters above the surface. Although NOAA provided wind data under 
17 levels, the resolution of data is 2.5-degree latitude x 2.5-degree longitude global grid.
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V. Results and discussion 

In this section, we first present the core results obtained using all counties in Kansas. 

To explore the robustness of the findings, we conduct propensity score matching to 

establish a subsample by incorporating nearby counties from adjacent states, Colorado and 

Oklahoma, into the evaluation. Results using the combined sample of adjacent counties 

and all counties in Kansas are also provided. For more details about the propensity scores 

and results, please refer to Appendix C. Based on the estimate results, cost-benefit analysis 

is provided in the last part of this section.

(1) Estimating the cloud seeding program impacts in Kansas

Table 3 presents the regression results and estimated effects of the cloud seeding 

program on hail frequency and magnitude for all Kansas counties. The average size of 

hailstones in Kansas is 1.13 inches, exceeding the size threshold that might potentially 

cause damage to crops. The results indicate that cloud seeding programs show no 

statistically significant effect on hailstorm frequency in target counties or downwind 

counties. However, estimates indicate that hail size diminishes by 0.098 inches in target 

areas, which is about 8%, but there is again no statistically significant effect on hail size in 

downwind areas. In short, these results are consistent with the literature; the evidence 

suggests that the cloud seeding program may not have a statistically significant impact on 

hailstorm frequency and magnitude, or the impact is negligible (Bergant, 2011; Gavrilov 

et al., 2013; and Rivera et al., 2020).

Additionally, insufficient moisture in the air as measured by the Dry index correlates 

with decreased hail frequency and magnitude. Moreover, there is an increase in rainfall of 

about 0.259 inches in targeted regions, representing approximately 7.3%, with a 

corresponding decrease of 0.077 inches in downwind areas, although this decrease is 

statistically insignificant. These results suggest that cloud seeding has not resulted in the 

“rain steal” phenomenon in this region.

Also, of interest is whether there is evidence that cloud seeding reduces crop damage. 

In Table 3, the regressions results examining the impact of the cloud seeding program on 

the crop loss ratio in Kansas are presented. The table reveals that the cloud seeding program 

had no statistically significant impact on the crop hail loss ratio or the crop drought loss 

ratio. This finding may be due to the fact that even though the hail size is estimated to be 
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reduced by 0.098 inches, on average the hail size is still above the 1 inch threshold. 

However, the analysis also reveals that the cloud seeding program is associated with 

an increase in crop flooding damage. Flooding damage, indicative of excessive 

precipitation, can impede farmers’ ability to sow crops or lead to crop damage. As detailed 

in Table 3, the cloud seeding program results in a notable rise in the flooding crop loss ratio 

by 0.541, around a 32% increase with a 99% level of significance17. The existing literature 

may provide evidence to support the crop flooding damage resulting from cloud seeding. 

Following cloud seeding missions for hail suppression, target areas tend to experience 

heightened precipitation of 10% to 12% (Spiridonov et al., 2015; Tuftedal et al., 2022). 

Furthermore, in cases where the cloud seeding mission is aimed at rain augmentation, 

the target areas often encounter even more substantial increases in precipitation. Drawing 

from experiences in other warm-season cloud seeding countries, Almheiri et al. (2021) 

conducted intensity-duration-frequency curves, revealing heightened rainfall intensities 

post-cloud-seeding missions and elucidating the potential reasons behind the significant 

urban inundation experienced by the United Arab Emirates in 2007 after seeding. Similarly, 

Yoo et al. (2022) observed a significant increase in runoff by approximately 60% in Korea 

following cloud seeding. In Texas, individual cells witnessed a 50 to 100% surge after 

seeding (Texas Natural Resource Conservation Commission, 1997).

Additionally, researchers assert that the speed at which rainfall occurs is understudied. 

In the natural environment, storms usually endure for only two to six hours, and rainfall or 

hail may fall steadily. However, experimental evidence suggests that cloud seeding can 

trigger the generation of more hailstones or rainfall within a 30-minute timeframe. This 

implies that precipitation is concentrated in a shorter duration, potentially explaining the 

elevated flooding crop loss ratio observed after cloud seeding programs. 

We also explored whether cloud seeding contributes to increased crop production or 

crop yield by mitigating hail damage or enhancing rainfall. Table 3 presents the impacts of 

cloud seeding on major crops, namely winter wheat, corn, and sorghum. Cloud seeding has 

no statistically significant effect on wheat or sorghum production in the target counties. 

17 It is worth noting that the US crop insurance typically reserves a 12% premium for severe and 
unexpected disaster losses, a sum considerably lower than the observed increase. This suggests that the 
elevated flooding crop loss ratio could present challenges to the financial sustainability of crop insurance 
companies. In the long term, there may be implications for increased insurance premiums and subsidies.
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However, there is a statistically significant increase of 17.8 bushels per harvested acre in 

corn yield, accounting for approximately a 15.0% increase. Conversely, in downwind 

counties, the spillover effect of the cloud seeding program results in a significant decline 

of sorghum productivity by approximately 10 bushels per harvested acre, reflecting a 

decrease of around 14.8%.

A potential explanation for these findings is that winter wheat can thrive in dryland 

conditions, but production and yield may decline when moisture levels are excessively high. 

These findings align with the patterns observed in Table 3. Also, less moisture as measured 

by the variable Dry significantly decreases production and yield on crops, but it affects 

wheat less than corn and sorghum. As anticipated, GDD contributes to increased crop 

production and yield, while SDD is linked to decreased production and yield. However, 

different crops exhibit varied responses to the Wet variable18.

(2) Estimating the cloud seeding program impacts in West Kansas 

In the Table 4 weather variable columns, the cloud seeding program similarly shows 

no statistically significant impact on hailstorm frequency. In the West Kansas sample, the 

cloud seeding program increases hail magnitude in downwind areas by 0.11 inches, 

approximately 9%.

In the Table 4 crop loss ratio column, despite the increase in hail magnitude due to 

the upwind cloud seeding program, the hail loss ratio does not exhibit a corresponding 

increase in the downwind areas. According to the results, the cloud seeding program is not 

statistically significant in the hail loss ratio regression. As observed in Table 3 crop loss 

ratio column, the cloud seeding program also raises the crop flooding loss ratio by 0.504 

(30.83%). Less moisture, as indicated by Dry, increases the loss ratio of drought and 

flooding on crops. As mentioned earlier, intense precipitation is sometimes observed after 

seeding events, and the intense precipitation can cause flooding, especially if the soil is 

dry. Therefore, if the Dry indicator deviates more from normal weather conditions, damage 

to croplands is more likely when intense precipitation occurs19. 

18 Corn vs. Grain Sorghum in Water Limited Scenarios:  https://www.cropquest.com/corn-vs-grain-
sorghum/#
19 See World Food Program “Why do floods follow droughts? Look to the Somali Region of Ethiopia”. 
https://www.wfpusa.org/articles/floods-follow-droughts-ethiopia/ 
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The estimated effects of cloud seeding on crop productivity in Table 4 are similar to 

Table 3. The cloud seeding program improves corn productivity in the seeded area by 8.5 

per bushel per harvested acre, around 7%. However, the magnitude in West Kansas sample 

is smaller than the full Kansas sample. However, the cloud seeding program decreases 

sorghum productivity in downwind areas by 10.146, around 16.23%, which is similar to 

the result of full Kansas sample. 

To summarize, the evidence presented in this paper provides some evidence that there 

is a statistically significant impact on hailstorm magnitude but not frequency. Moreover, I 

found no evidence that cloud seeding reduced hail and drought indemnities on crops. 

However, the analysis suggests that cloud seeding may have unintentionally resulted in 

increased losses from excess moisture (i.e. flooding) in seeding areas. Finally, the results 

suggest that there are spillover effects of the cloud seeding program on downwind areas, 

and the results are robust among different samples. Cloud seeding is associated with an 

increase in corn productivity in seeded areas and a decrease in sorghum productivity in 

downwind areas. These findings may be because corn favors more moisture, while 

sorghum is sensitive to excess moisture and flooding. While I found that the cloud seeding 

program has an impact on crop productivity, the mechanism might not be due to the 

beneficial competitiveness hypothesis but unintended changes in precipitation patterns, 

such as increasing intense rainfall.
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(3) Cost-Benefit analysis of cloud seeding program 

The cloud seeding program in Western Kansas Groundwater Management District No. 

1 aims to preserve water resources and reduce hail damage. Evidence shows that the 

program increases precipitation by 0.26 inches during the growing season, which benefits 

water resource management. However, it also raises crop loss ratios due to unintended 

flooding. While the value of aquifer recharge is beyond the scope of this study, the flood 

damage to crops is reflected in yield data. Including both would lead to double-counting. 

This analysis uses changes in crop productivity, such as corn yield, as a proxy to assess the 

economic value of water resource enhancement and flood damage.

3.1 County government perspective 

County officials in Kansas, where agriculture accounts for over 40% of GDP in most 

participating counties (see Figure 6), prioritize decisions that benefit farmers to gain 

political support. In this analysis, the benefits of cloud seeding include productivity gains, 

while costs encompass spillover effects and program expenses.

The net social benefit (NSB) for each participating county from 2002 to 2016 is 

calculated as the difference between social benefits and costs, expressed in real terms (2002 

dollars). Since county governments typically make short-term budget decisions without 

discounting long-term benefits, costs and benefits are converted to real terms using the 

Consumer Price Index with 2002 as the base year. Additionally, the net present value (NPV) 

is calculated using Equation (3):

𝑁𝑃𝑉 = ∑𝑇
𝑡=0

𝑁𝑆𝐵𝑡

(1 + 𝑟)𝑡
                                     (3)

Here, 𝑁𝑆𝐵𝑡 represents net social benefits in year t, and r is the discount rate sourced 

from the Office of Management and Budget for 2002. Sensitivity analysis is conducted 

using real discount rates of 3.1% and 3.9% for 10-year and 30-year projects, respectively.

The program costs include state and county government budgets. The state budget is 

derived from the Kansas Water Office, while county budget data comes from the Kansas 

Department of Administration. Where specific county data is unavailable, the average 

expenditure across participating counties, approximately $19,225 annually, is used. The 

total annual cost of the cloud seeding program is approximately $367,880, including fixed 

and variable costs.
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The benefits are calculated based on changes in crop productivity. The productivity 

gain for corn is 8.5 bushels per acre, while sorghum experiences a loss of 10 bushels per 

acre in downwind counties due to spillover effects20. These yield changes are multiplied 

by harvested acres and average crop prices in Kansas, with data sourced from the USDA 

National Agricultural Statistics Service21.

Table 5 presents the results of the cost-benefit analysis. Net benefits vary by crop type, 

years of program participation, and spillover effects. Most participating counties show 

positive net benefits. For instance, Stevens County, which participated for two years, 

generated a net benefit of $4 million. In contrast, Lane and Scott Counties, with prolonged 

participation, experienced negative net benefits due to significant spillover effects on 

sorghum.

3.2 State Government Perspective

The state government’s role includes investing in and maintaining program 

infrastructure, such as radar systems and aircraft. Unlike county governments, the state 

must account for downwind effects in non-participating counties that experience negative 

spillover impacts.

Table 6 presents NPV estimates at various discount rates to demonstrate result 

robustness. Downwind counties incurred cumulative losses of approximately $30 million 

over the analysis period. In contrast, participating counties gained $40 million, resulting in 

a net positive benefit22.

Historical evaluations align with these findings. For example, Eklund et al. (1999) 

estimated a return ratio of 37 for reduced crop damage in Kansas target counties. Similarly, 

Knowles and Skidmore (2021) found a return ratio of 37 for a cloud seeding program in 

North Dakota. In this study, the discounted NPV for 14 target counties in Kansas is $41.3 

million, with costs totaling $4.1 million, yielding a return ratio of approximately 10. 

However, incorporating spillover effects reduces the return ratio to 3. Despite a favorable 

cost-benefit ratio, the state government terminated the program. This decision may reflect 

20 We also estimate the cost-benefit results using the parameters from Table 3: the productivity gain for 
corn is 18 bushels per acre, and the productivity loss for sorghum is 10 bushels per acre. Please see 
Appendix D.
21 The USDA NASS dataset provides monthly crop prices only, and the price used for the cost-benefit 
analysis is the average annual crop price.
22 See footnote 20.
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political considerations, as spillover effects resulted in disapproval from negatively 

impacted counties. 

V. Conclusion 

Hail damage to agriculture often receives inadequate attention, particularly in regions 

like Kansas, where frequent hailstorms result in significant crop losses. To mitigate hail 

damage, Kansas state and county governments implemented a cloud seeding program 

aimed at suppressing hail and enhancing regional precipitation. This study examines the 

program’s effectiveness by analyzing its impact on hailstorm frequency and intensity, crop 

damage, and production, while accounting for potential spillover effects.

Using hail frequency and intensity to evaluate the cloud seeding program’s efficacy, 

the findings suggest that the program lacks a statistically significant impact on reducing 

hail frequency or intensity, or that the observed impact is negligible. These results align 

with empirical studies from Slovenia, Serbia, and Argentina (Bergant, 2011; Gavrilov et 

al., 2013; Rivera et al., 2020). While the program decreased the average hailstone size by 

about 8%, from 1.13 inches to 1.03 inches, the size remains above NOAA’s 1-inch 

threshold for potential crop damage. This may explain why the program does not 

significantly reduce crop loss ratios associated with hail in this study. Additionally, the 

program does not appear to reduce crop loss ratios due to drought. However, the program 

is associated with an increase in precipitation within targeted areas.

An unintended consequence of the program is an increase of approximately 32% to 

35% in crop flood loss ratios in cloud-seeded counties, as observed in both Kansas and 

West Kansas samples. This aligns with earlier findings that precipitation intensity often 

rises sharply following cloud seeding missions (Almheiri et al., 2021; Spiridonov et al., 

2015; Texas Natural Resource Conservation Commission, 1997; Tuftedal et al., 2022; Yoo 

et al., 2022). Flooding may also result from seeding conducted after drought conditions, 

where overly dry soil fails to effectively absorb water.

Examining potential downwind effects, the evidence provides no support for a “rain 

theft” phenomenon; downwind counties do not experience reduced rainfall when upwind 

counties conduct cloud seeding. Moreover, seeded counties benefit from increased rainfall, 

which may recharge underground water sources. However, downwind counties experience 
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approximately a 15% reduction in sorghum productivity, while seeded counties see 

increased corn production of 15.01% and 8.30%.

The findings regarding crop productivity are robust, and the aggregate net benefit and 

net present value of the cloud seeding program are positive based on the estimations. 

However, the program’s overall outcomes are not entirely advantageous due to potential 

unintended consequences. Limitations of the study arise from data constraints, particularly 

the absence of specific information on seeding dates and locations. Using county-level data 

could overestimate the program’s impact because hail damage tends to occur in narrow, 

localized zones rather than uniformly across entire crop fields.

Given the vast cropland in the U.S., relying solely on crop insurance imposes 

significant financial burdens on both farmers and taxpayers23. Alternative solutions, such 

as anti-hail nets (Gandorfer et al., 2016; Porsch et al., 2018; Rogna et al., 2021; Rogna et 

al., 2022), are impractical for large-scale farms due to their cost and limited effectiveness24, 

as large hailstones can still penetrate these nets (Childs et al., 2020).

Cloud seeding remains a promising approach for reducing hail damage across 

extensive agricultural areas. Technological advancements, such as uncrewed aircraft 

systems, hold potential for improving the efficiency and effectiveness of seeding 

operations (DeFelice et al., 2023). Future discussions should focus on optimizing project 

design and addressing spillover effects. Introducing compensation mechanisms for affected 

areas could mitigate negative externalities and enhance the program’s sustainability.

More research is essential to better understand the efficacy of cloud seeding and its 

broader impacts. Continued exploration of this technology is vital for developing 

innovative, cost-effective solutions to mitigate hail damage and support the agricultural 

sector.

23 On average, producers only pay 40% of the premium, see: https://www.ers.usda.gov/topics/farm-
economy/farm-commodity-policy/title-xi-crop-insurance-program-provisions/ 
24 Average farmland sizes are 60 ha and 11 ha in Germany and Italy, respectively. In the USA, the average 
farmland size is 445 ha, and it might be the reason why farmers could not establish anti-hail net. Therefore, 
cloud seeding might be a more cost-efficient way to avoid hail damage.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5104974

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://www.ers.usda.gov/topics/farm-economy/farm-commodity-policy/title-xi-crop-insurance-program-provisions/
https://www.ers.usda.gov/topics/farm-economy/farm-commodity-policy/title-xi-crop-insurance-program-provisions/


References

Abshaev, M. T., Abshaev, A. M., Malkarova, A. M., & Tsikanov, K. A. (2022). Hail 
suppression to protect crops in the North Caucasus. Russian Meteorology and 
Hydrology, 47, 487-498.

Allen, J. T., Giammanco, I. M., Kumjian, M. R., Punge, H. J., Zhang, Q., Groenemeijer, 
P., et al. (2020). Understanding hail in the Earth system. Reviews of Geophysics, 58, 
e2019RG000665. https://doi.org/10.1029/2019RG000665.

Almheiri, K. B., Rustum, R., Wright, G., & Adeloye, A. J. (2021). Study of impact of 
cloud-seeding on intensity-duration-frequency (IDF) curves of Sharjah City, the 
United Arab Emirates. Water, 13(23). https://doi.org/10.3390/w13233363.

Auf der Maur, A., & Germann, U. (2021). A re-evaluation of the Swiss hail suppression 
experiment using permutation techniques shows enhancement of hail energies when 
seeding. Atmosphere, 12, 1623.

Bennett, D. S. (1999). Parametric models, duration dependence, and time-varying data 
revisited. American Journal of Political Science, 43(1), 256-270.

Boardman, A. E., Greenberg, D. H., Vining, A. R., and Weimer, D. L. (2018). The Social 
Discount Rate. In Cost-Benefit Analysis: Concepts and Practice (pp. 237–268). 
Chapter 10, Cambridge: Cambridge University Press.

Box-Steffensmeier, J. M., & Jones, B. S. (1997). Time is of the essence: Event history 
models in political science. American Journal of Political Science, 41, 1414-1461.

Childs, S. J., Schumacher, R. S., & Demuth, J. L. (2020). Agricultural perspectives on 
hailstorm severity, vulnerability, and risk messaging in eastern Colorado. Weather, 
Climate, and Society, 12, 897-911.

Changnon, S. A. (1971). Note on hailstone size distributions. Journal of Applied 
Meteorology, 10, 168-170.

Changnon, S. A., & Changnon, D. (2000). Long-term fluctuations in hail incidences in 
the United States. Journal of Climate, 13, 658-664.

Cross, H. Z., & Zuber, M. S. (1972). Prediction of flowering dates in maize based on 
different methods of estimating thermal units. Agronomy Journal, 64, 351-355.

DeFelice, T. P., D. Axisa, J. J. Bird, C. A. Hirst, E. W. Frew, R. P. Burger, D. 
Baumgardner, G. Botha, H. Havenga, D. Breed, S. Bornstein, C. Choate, C. Gomez-
Faulk, and M. Rhodes (2023) Modern and prospective technologies for weather 
modification activities: A first demonstration of integrating autonomous uncrewed 
aircraft systems. Atmospheric Research, 290, 106788. 

DeFelice, T. P., Golden, J., Griffith, D., Woodley, W., Rosenfeld, D., Breed, D., Solak, 
M., & Boe, B. (2014). Extra area effects of cloud seeding—An updated assessment. 
Atmospheric Research, 135-136, 193-203.

Dessens, J., Sanchez, J. L., Berthet, C., Hermida, L., & Merino, A. (2016). Hail 
prevention by ground-based silver iodide generators: Results of historical and 
modern field projects. Atmospheric Research, 170, 98-111.

Eklund, D. L., Jawa, D. S., & Rajala, T. K. (1999). Evaluation of the Western Kansas 
Weather Modification Program. Journal of Weather Modification, 31, 91-101.

Fan, J., Zhang, Y., Wang, J., Jeong, J. H., Chen, X., Zhang, S., Lin, Y., Feng, Z., & 
Adams-Selin, R. (2022). Contrasting responses of hailstorms to anthropogenic 
climate change in different synoptic weather systems. Earth’s Future, 10, 
e2022EF002768. https://doi.org/10.1029/2022EF002768.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5104974

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://doi.org/10.1029/2019RG000665
https://doi.org/10.1029/2022EF002768


Federer, B., Waldvogel, A., Schmid, W., Schiesser, H. H., Hampel, F., Schweingruber, 
M., Stahel, W., Bader, J., Mezeix, J. F., & Doras, N. (1986). Main results of 
Grossversuch IV. Journal of Applied Meteorology and Climatology, 25, 917-957.

Foote, G. B., & Knight, C. A. (1979). Results of a randomized hail suppression 
experiment in Northern Colorado. Part I: Design and conduct of the experiment. 
Journal of Applied Meteorology, 18, 1526-1537.

Gavrilov, M. B., Markovic, S. B., Zorn, M., Komac, B., Lukic, T., Milosevic, M., & 
Janicevic, S. (2013). Is hail suppression useful in Serbia? General review and new 
results. Acta Geographica Slovenica, 53, 165-179.

Knowles, S., & Skidmore, M. (2021). Cloud seeding and crops yields: Evaluation of the 
North Dakota Cloud Modification Project. Weather, Climate, and Society, 13(4), 
885-898.

McMaster, G. S., & Smika, D. E. (1988). Estimation and evaluation of winter wheat 
phenology in the central Great Plains. Agricultural and Forest Meteorology, 43, 1-
18.

National Center for Environmental Information. (2009). State Climate Extremes 
Committee: Proposed standards for the collection, storage, and measurement of 
hailstones. Retrieved from https://www.ncdc.noaa.gov/monitoring-
content/extremes/scec/reports/SCEC-Hail-Guide.pdf

NOAA National Centers for Environmental Information (NCEI). (2022). U.S. billion-
dollar weather and climate disasters. https://www.ncei.noaa.gov/access/billions/ 
https://doi.org/10.25921/stkw-7w73

Pesaran, M., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal 
of Econometrics, 142, 50-93.

Pirani, F. J., Najafi, M. R., Joe, P., Brimelow, J., McBean, G., Rahimian, M., Stewart, R., 
& Kovacs, P. (2023). A ten-year statistical radar analysis of an operational hail 
suppression program in Alberta. Atmospheric Research, 295, 107035.

Púčik, T., Castellano, C., Groenemeijer, P., & Kuhne, T. (2019). Large hail incidence and 
its economic and societal impacts across Europe. Monthly Weather Review, 147, 
3901-3916.

Rivera, J. A., Otero, F., Tamayo, E. N., & Silva, M. (2020). Sixty years of hail 
suppression activities in Mendoza, Argentina: Uncertainties, gaps in knowledge and 
future perspectives. Frontiers in Environmental Science, 8. 
https://doi.org/10.3389/fenvs.2020.00045

Rogna, M., Schamel, G., & Weissensteiner, A. (2021). The apple producers’ choice 
between hail insurance and anti-hail nets. Agricultural Finance Review, 82, 20-48.

Rogna, M., Schamel, G., & Weissensteiner, A. (2022). Modelling the switch from hail 
insurance to anti-hail nets. The Australian Journal of Agricultural and Resource 
Economics. https://doi.org/10.1111/1467-8489.12499

Sarafidis, V., & Weber, N. (2015). A partially heterogeneous framework for analyzing 
panel data. Oxford Bulletin of Economics and Statistics, 77, 274-296.

Simeonov, P. (1996). An overview of crop hail damage and evaluation of hail 
suppression efficiency in Bulgaria. Journal of Applied Meteorology, 35, 1574-1581.

Sophocleous, M. (2005) Groundwater recharge and sustainability in the High Plains 
aquifer in Kansas, USA. Hydrogeology Journal, 13, 351-365.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5104974

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://www.ncdc.noaa.gov/monitoring-content/extremes/scec/reports/SCEC-Hail-Guide.pdf
https://www.ncdc.noaa.gov/monitoring-content/extremes/scec/reports/SCEC-Hail-Guide.pdf
https://www.ncei.noaa.gov/access/billions/
https://doi.org/10.1111/1467-8489.12499


Spiridonov, V., Karacostas, T., Bampzelis, D., & Pytharoulis, I. (2015). Numerical 
simulation of airborne cloud seeding over Greece, using a convective cloud model. 
Asia-Pacific Journal of Atmospheric Sciences, 51, 11-27.

Tuftedal, M. E., Delene, D. J., & Detwiler, A. (2022). Precipitation evaluation of the 
North Dakota Cloud Modification Project (NDCMP) using rain gauge observations. 
Atmospheric Research, 269. https://doi.org/10.1016/j.atmosres.2021.105996

Wang, W., Yao, Z., Guo, J., Tan, C., Jia, S., Zhao, W., Zhang, P., & Gao, L. (2019). The 
extra-area effect in 71 cloud seeding operations during winters of 2008-14 over 
Jiangxi Province, East China. Journal of Meteorological Research, 33, 528-539. 
https://doi.org/10.1007/s13351-019-8122-1

Yoo, C., Na, W., Cho, E., Chang, K. H., Yum, S. S., & Jung, W. (2022). Evaluation of 
cloud seeding on the securement of additional water resources in the Boryeong Dam 
Basin, Korea. Journal of Hydrology, 613. https://doi.org/10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5104974

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://doi.org/10.1016/j.atmosres.2021.105996
https://doi.org/10


Source: NOAA
According to NOAA, when the hail size exceeds 1 inch, the hailstone might cause potential damage. The 
entire state of Kansas is covered by hailstorms that cause damage, according to historical data.

Figure 1. Hail distribution in Great Plains

Counties that participated in the cloud seeding program are concentrated in the western 

part of Kansas, which is particularly threatened by hailstorms, especially in the summer.

Figure 2. Map of counties participating in the cloud seeding project (2002, Kansas)
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Data source: NOAA.
According to NOAA’s report, this figure indicates the days with different seeding 
missions each year. Approximately 65% of the days were dedicated to hail suppression 
missions.
Figure 3. Number of modification days for hail suppression and rain enhancement 

in Kansas

Data source: NOAA.
In total, there are 105 counties in Kansas, and 14 counties participated in the cloud 

seeding program, with participation decreasing over time. The 2007 data is missing from 

our dataset.

Figure 4. Numbers of counties participating in Kansas cloud seeding program
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The prevailing wind direction in Kansas during the growing season is from west to east. 

Based on this map, we can identify the downwind counties.

Figure 5. Wind direction in Kansas (2003 July)25

Most of the counties that participate in the cloud seeding program have a high contribution 

of agriculture to the county GDP.

Figure 6. Agriculture's Contribution to County GDP (Percentage)

25 The Kansas shapefile is from USGS National Boundary Dataset: 
https://www.sciencebase.gov/catalog/item/59fa9f5de4b0531197affb31 
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Table 1 Descriptive Statistics for Kansas Sample (County-Level Data, 2002–2020)

Variable* Obs** Mean Std. dev. Min Max
Weather
hail frequency (times/year) 1,890 10.32 8.78 0 94 
hail magnitude (inch) 1,890 1.13 0.33 0 3 
rainfall (inch) 1,881 3.55 1.30 0.69 9.10
Loss Ratio 
Hail 1,540 2.90 1.69 0.02 17.71
flood (excess moisture) 1,817 1.70 0.99 0.22 8.82
Drought 1,841 2.37 1.10 0 9.78
Yield (bushel per acre 
Sorghum 1,418 67.32 22.92 13 134 
winter wheat 1,855 40.82 10.12 12.1 80 
Corn 1,654 118.72 38.24 18 225 
Production (1,000 bushel)***
Sorghum 1,418 2,090 1,908 9.4 12,400 
winter wheat 1,855 3,308 2,764 9.0 18,500 
Corn 1,654 4,961 5,042 14.8 32,400 
Environmental 
GDD40 1,842 3923 835 0 5150 
GDD45 1,842 3344 725 0 4535 
GDD50 1,842 2770 617 0 3922 
SDD86 1,842 487 242 0 1532 
Dry 1,890 0.43 0.70 0 3.52 
Wet 1,890 0.60 0.79 0 4.46 
* Data pertain to the entire year and are not restricted to the cloud seeding season.
**The sample is unbalanced, with varying numbers of years included for each county.
*** This represents the total annual production for each county in Kansas, measured in thousands of 
bushels.
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Table 2. Variable definitions

Variable name Definition Data Source
Hail frequency Total number of hailstorms occurs in growing 

season in county i 
Next Generation 
Weather Radar

Hail magnitude Average diameter of hailstones in growing 
season in county i (inches)

Next Generation 
Weather Radar

Rainfall Average rainfall in growing season in county i 
(inches)

NOAA 
Climate Data Online

Seeding Participation in a cloud seeding program by 
county i (0 and 1)    

NOAA

UWseeding Participation in a cloud seeding program by 
upwind county of county i (0 and 1)

NOAA and NLDAS-2

Dry Drought severity deviates from normal weather 
conditions and is calculated using the Palmer-Z 
index.

NOAA 

Wet Wetness severity deviates from normal weather 
conditions and is calculated using the Palmer-Z 
index.

NOAA 

GDD Growing degree day is a measure of heat 
accumulation in the growing season, calculated 
by summing the difference between the daily 
temperature and the base temperature*. 

NOAA 
Climate Data Online

SDD Stress degree day is a measure of heat stress on 
crop plants in the growing season, calculated by 
summing the difference between the maximum 
daily temperature and 86 degrees Fahrenheit. 

NOAA 
Climate Data Online

Loss ratio Total indemnity divided by total premium for 
each peril 

USDA Risk 
Management Agency

Crop Yield Crop production bushel per acre USAD 
National Agricultural 
Statistics Service

Crop Production Total production of crops (winter wheat, corn, 
and sorghum) in 1,000 bushel

USAD 
National Agricultural 
Statistics Service

* The base temperatures are 40 degrees Fahrenheit for winter wheat, 45 degrees Fahrenheit for sorghum, and 
50 degrees Fahrenheit for corn.
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Table 3. Cloud seeding effects (Kansas sample) 

Weather variables Crop loss ratio Crop productivity 
Hail 

frequency
Hail 

magnitude Rainfall
Hail 

Loss ratio
Drought

Loss ratio
Flooding
Loss ratio Wheat Corn Sorghum

Seed -0.428
(1.126)

-0.098*
(0.053)

0.259***
(0.078)

0.293
(0.257)

0.114
(0.132)

0.541***
(0.156)

-0.656
(1.516)

17.816***
(3.536)

-2.027
(2.406)

UWseed 2.548
(1.590)

0.095
(0.075)

-0.077
(0.110)

-0.184
(0.360)

0.199
(0.187)

0.111
(0.223)

-3.035
(2.226)

5.645
(5.053)

-9.983***
(3.361)

Wet 0.893***
(0.312)

0.017
(0.014)

0.808***
(0.022)

0.192**
(0.076)

0.122***
(0.037)

0.237***
(0.042)

-0.686*
(0.398)

0.435
(1.035)

3.738***
(0.765)

Dry -1.790***
(0.454)

-0.059***
(0.022)

-0.502***
(0.031)

0.426***
(0.112)

0.652***
(0.053)

0.261***
(0.063)

-3.574***
(0.563)

-6.771***
(1.345)

-10.761***
(1.008)

GDD 0.0002
(0.0006)

-0.00001
(0.00002)

0.0001***
(0.00004)

0.0001
(0.0002)

-0.000001
(0.0003)

-0.0001
(0.0001)

-0.0004
(0.0005)

0.004***
(0.001)

0.004***
(0.001)

SDD 0.0002
(0.0002)

0.00007
(0.0001)

-0.0002
(0.0002)

-0.00001
(0.0006)

0.0003
(0.0003)

0.0005
(0.0003)

0.002
(0.003)

-0.039***
(0.007)

-0.034***
(0.005)

County
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

R-square
Within 0.195 0.056 0.789 0.210 0.509 0.163 0.386 0.565 0.712

Between 0.029 0.004 0.527 0.161 0.040 0.019 0.067 0.001 0.226
Overall 0.136 0.051 0.565 0.197 0.482 0.135 0.327 0.208 0.599

Observations 1,842 1,842 1,835 1,842 1,800 1,774 1,615 1,426 1,193
*:10%, **:5%, ***:1% statistic significant. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5104974

Preprin
t n

ot p
eer re

vie
wed



Table 4. Cloud seeding effects (West Kansas sample)

Weather variables Crop loss ratio Crop productivity 

Variable Hail
frequency

Hail
magnitude Rainfall

Hail 
Loss ratio

Drought
Loss 
ratio

Flooding
Loss ratio Wheat Corn Sorghum

Seed 0.301
(1.096)

-0.034
(0.046)

0.015
(0.045)

0.237
(0.230)

0.027
(0.109)

0.504***
(0.184)

-0.707
(1.307)

8.499**
(4.056)

-2.594
(2.456)

UWseed 3.150**
(1.463)

0.117*
(0.062)

-0.080
(0.061)

-0.165
(0.309)

0.127
(0.145)

0.062
(0.249)

-2.288
(1.805)

0.152
(5.471)

-10.191***
(3.267)

Wet 0.182
(0.437)

-0.026
(0.018)

0.196***
(0.018)

0.178*
(0.094)

0.094*
(0.044)

0.223***
(0.073)

0.389
(0.556)

2.701
(1.824)

4.610***
(1.057)

Dry -1.438**
(0.642)

0.012
(0.027)

-0.152***
(0.027)

0.063
(0.145)

0.502***
(0.068)

0.221*
(0.118)

-2.281***
(0.777)

-8.128***
(2.312)

-10.146***
(1.492)

GDD 0.001
(0.001)

0.00003
(0.0001)

0.0002***
(0.0001)

-0.0002
(0.0003)

-0.0002
(0.0001)

-0.0002
(0.0002)

-0.003*
(0.001)

0.005
(0.005)

-0.001
(0.003)

SDD -0.0011
(0.003)

-0.0002
(0.0002)

-0.001***
(0.0002)

0.001
(0.001)

0.001*
(0.0004)

0.001
(0.001)

0.007
(0.004)

-0.026*
(0.014)

-0.011
(0.008)

County 
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time Fixed-
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

R-square
within 0.220 0.138 0.637 0.272 0.670 0.198 0.689 0.396 0.748

between 0.015 0.004 0.324 0.057 0.184 0.005 0.0004 0.117 0.127
Overall 0.173 0.114 0.241 0.239 0.612 0.160 0.539 0.147 0.538

Observations 638 638 641 617 615 587 498 454 466
*:10%, **:5%, ***:1% statistic significant.
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Table 5. Net Benefit and Net Present Value of Counties Participating in the Cloud 

Seeding Program (2002–2016)

Net Present Value

County

Number of years  
participating in 
program during

2002-2016

Net benefit
(2002-2016)
(real 2002 
dollars)

Real 
discount rate 

3.1%

Real 
discount 

rate 3.9%
Finney 10 1,831,075 1,426,941 1,345,617
Gove 2 790,496 611,813 575,094
Grant 8 4,873,625 4,101,933 3,939,103
Gray 10 2,959,406 2,404,498 2,287,780

Greeley 6 6,189,554 4,649,501 4,331,813
Hamilton 11 5,506,160 4,586,679 4,393,534
Haskell 8 17,803,679 14,700,000 14,000,000
Kearny 13 2,015,673 1,382,509 1,252,628
Lane 14 -8,631,244 -7,137,036 -6,820,124
Scott 14 -2,517,396 -1,800,892 -1,657,309

Stanton 6 8,702,797 6,554,645 6,118,098
Stevens 2 4,375,014 3,237,275 3,001,360
Wallace 2 1,076,670 737,243 670,059
Wichita 11 7,220,984 5,869,599 5,571,474

Based year: 2002.

Table 6. Net present value of cloud seeding program in Kansas

Net present value
(2002-2016)

Real Discount Rates 3.1% Real Discount Rates 3.9%
NPV (participating) 39,009,128 41,324,710 

NPV (non-participating) -28,031,183 -29,149,102 
Overall 10,977,945 12,175,608 
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Appendix A. Theoretical Model of decision making of cloud seeding program
In this model, different levels of government compete to reduce their contributions 

while still maintaining the provision of the public good. Brien and Eger III's (2021) model 

builds on the work of Hettich and Winer (1984, 1988), who developed a normative model 

of tax structure to identify the motivations behind government decisions. Their model 

assumes that the aim of government officials is to maximize voter support, rather than 

acting as altruistic or omnipotent social planners. In this model, there are M county 

governments and one state government. County level elected officials seek to maximize 

utility specifically related to the jointly funded program. For a representative county j, there 

are N people living in the county.

County government official maximization problem:

𝑀𝑎𝑥 𝑈𝑗 =
𝑁

𝑖=1
𝑏𝑖(𝛼𝑗 ∙ 𝐸𝑗) ― 𝑠(𝛼𝑢𝐸𝑢

𝑗 ) ― 𝑐𝑖(𝑣𝑖)

Subject to 𝐸𝑗 = 𝐿𝑗 + 𝐴

where  𝑣𝑖 = 𝐿𝑗

𝑁

The local government elected official decides whether to participate in the program, 

with 𝛼 as a binary variable (1 for participation, 0 otherwise). Once the county official 

decides to participate, he/she then determines the annual expenditure, 𝐸, on the cloud 

seeding program. When the county adopts the program, it generates benefit for the residents. 

The political support to the county official can be expressed as 𝑏𝑖(𝛼 ∙ 𝐸), representing voter 

i’s expected support for the county official due to the expenditure on cloud seeding 

program (Hettich and Winer, 1988). For example, spending on cloud seeding might reduce 

hail damage to farmer i’s crops in the county, leading farmer i to support the county 

government official and thus increase the likelihood of success in the next election. 

Whilehe expenditures (𝐸) could in principle depend on other variables, for simplicity 𝐸 is 

constant. 

The political cost refers to the cost of levying taxes from taxpayers, represented by 

the function 𝑐𝑖(𝑣𝑖). In the function, 𝑣𝑖 may represents not only the taxes paid by voter i, but 

also the broader deadweight loss associated with taxation (Hettich and Winer, 1988). The 

specific definition of 𝑣𝑖 depends on the design of tax collection and the goals of the research. 
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Within the framework envisioned by Hettich and Winer (1988), all farmer production 

functions and taxable activities are included in the model, whereas Brien and Eger III's 

(2021) assume identical taxpayers, with each paying the same amount of tax for the project, 

represented as  𝑣𝑖 = 𝐿
𝑁. I follow Brien and Eger III's (2021) in this research because the 

focus is on the efficacy of cloud seeding program where local government contributions to 

covering the cost of cloud seeding are based on population size26. 

Expenditure on cloud seeding program is equal to the county government’s 

contribution, denoted as 𝐿𝑗, plus, the contribution from the state government, denoted as 𝐴. 

One key difference in my model and that of Brien and Eger III's (2021) and Hettich 

and Winer (1988) is the function of 𝑏𝑖(). They assumed that ∂𝑏𝑖 ∂𝐸 > 0, which indicates 

that expenditure on the jointly funded program effectively corrects externalities. Although 

cloud seeding is intended to suppress hail damage, its effect might be zero or even negative. 

A key goal of this paper is to test the effectiveness of cloud seeding program. If the program 

results in a negative or zero impact on farmers in the county and leads to reduced political 

support, the outcome to the maximization problem would be to terminate the program, 

where 𝛼 = 0. 

For a cloud seeding program, the political support in the county might be influenced 

by decisions made by upwind counties, i.e., a spatial spillover effect, represented by 𝑠

(𝛼𝑢𝐸𝑢
𝑗 ). As mentioned in background section, one potential and controversial spillover 

effect of cloud seeding program is a reduction in rainfall in downwind areas.  For example, 

farmer i might experience reduced rainfall and adverse impacts on flood and crop 

production, which could consequently lower the overall probability of voting for the 

current government. Here, I have not accounted for farmers’ risk perceptions, but rather 

assume that farmers accurately attribute the rainfall reduction to the cloud seeding program 

rather than other potential causes, such as long-term climate trends. 

The state government decides how much contribute to the cloud seeding program but 

does not control how the funds are distributed among the counties. This is represented as  𝐴𝑗

=
𝐴

∑𝑀
𝑗=1 𝛼𝑗

. Therefore, the fewer counties that participate in the program, the more funding 

26 According to the Council Grove Republican, "County governments normally pay between $12,000 and 
$35,000 each year to help finance the weather effort, depending on population" (May 7, 1996, p. 2).
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each participating county receives. However, reduced county participation may affect the 

total contribution from the state, which in turn could influence both the efficacy of the 

cloud seeding program and the potential support for it. For example, Kansas weather 

modification program officials have noted that too many storms with too few aircraft for 

cloud seeding missions can negatively impact the program’s effectiveness. 

Additionally, the state government may be unwilling to contribute to the program if 

the total contributions from local governments fall below a minimum service threshold, 𝑇. 

If the combined expenditure of all participating counties is less than 𝑇, the state government 

will contribute nothing, resulting in the termination of the jointly funded program. County 

officials focus solely on their own maximization problem and are unaware of the threshold 

set by the state government. The state government does not experience spillover effects. If 

the total political support resulting from funding the cloud seeding program is positive, the 

state government will pursue the political benefits, even if negative support exists from 

county j. 

Appendix B. Farmers Production Model

Link to the model section, the government officers can levy tax from the residents. 

And based on Hettich and Winer (1984, 1988), the taxable activity can be derived from the 

production functions. 

The cloud seeding program serves as a tool to mitigate hail damage, with the 

expectation that target areas experience increased agricultural productivity. However, the 

downwind effect may result in unintended impacts from the cloud seeding program. To 

offer a clearer assessment of these potential effects, consider the damage control model, as 

proposed by Lichtenberg and Zilberman (1986). In this approach, damage control agents, 

such as pest control and theft prevention, play a crucial role in preserving crop production 

and profitability. 

Building on the work of Knowles and Skidmore (2021), who applied the damage 

control framework to the evaluation of cloud seeding programs as damage control agents 

for wheat and barley crops in North Dakota. Of direct relevance, Trilnick and Zilberman 

(2021) developed a structural model based on the damage control approach, which 

introduced microclimate engineering and sunlight reflection as damage control agents for 
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pistachio yields in California.

In equation (B1), 𝑌𝑖𝑡(𝑍,𝑊) represents the potential output function under weather 

conditions 𝑊, encompassing factors such as temperature, moisture, hail, etc. 𝑍 is a vector 

of production inputs, including fresh water, fertilizer, and labor, etc. 𝑌0
𝑖𝑡(𝑍) denotes the 

minimum crop output regardless of weather conditions, which is interpreted as the crop 

resiliency. For instance, it may account for a portion of the crops surviving after hail 

damage, and farmers might implement post-hail remedies to expedite the recovery of crops 

from damage. 𝐺𝑖𝑡(𝑊(𝑐𝑖𝑡)) is the damage or loss function, where 𝐺𝑖𝑡(𝑊 (𝑐𝑖𝑡)) ∈ [0,1], and 

𝑐𝑖𝑡 indicates whether county i participated in cloud seeding program, the damage control 

of hail, in year t or not. 

𝑌𝑖𝑡(𝑍,𝑊) = 𝑌0
𝑖𝑡(𝑍) + 𝑌1

𝑖𝑡(𝑍){1 ― [𝐺𝑖𝑡(𝑊𝑖(𝑐𝑖𝑡)]}                            (B1)

With this production function, farmers collectively in county i address the profit 

maximization problem outlined in equation (B2), where  𝑝𝑦, 𝑝𝑧, and 𝑝𝑐 represent the prices 

of outputs, inputs, and participation in the cloud seeding program, respectively. For 

simplicity, here after denote 𝑌0
𝑖𝑡(𝑍) as equal to zero.

max
𝑐𝑖𝑡

   𝜋𝑖𝑡 = 𝑝𝑦{𝑌1
𝑖𝑡(𝑍)[1 ― 𝐺𝑖𝑡(𝑊𝑖(𝑐𝑖𝑡))] ― 𝑝𝑧𝑍 ― 𝑝𝑐𝑐𝑖𝑡                     (B2)

Assuming that farmers do not adjust inputs, 𝑍, in conjunction with the decision of whether 

or not to participate in the cloud seeding program, the marginal effect of cloud seeding 

participation on profit is shown in equation (B3).

𝑑𝜋𝑖𝑡

𝑑𝑐𝑖𝑡
= 𝑝𝑦𝑌1

𝑖𝑡(𝑍)( ―
∂𝐺𝑖𝑡

∂𝑊𝑖𝑡

∂𝑊𝑖𝑡(𝑐𝑖𝑡)
∂𝑐𝑖𝑡

) ― 𝑝𝑐  (B3)

From equation (B3), the price and production are both positive terms. In general, weather 

conditions have a positive correlation with damage (∂𝐺(𝑊(.))
∂𝑊 >0). For instance, when more 

hailstorms occur in a year, there is a higher probability of crop damage. Moreover, as 

predicted by the beneficial competitiveness hypothesis (see section II), if the cloud seeding 

program effectively modifies adverse weather impacts such as reducing hailstorm 

frequency and magnitude, then 
∂𝑊(𝑐𝑖𝑡)

∂𝑐𝑖𝑡
<0. 

The damage abatement model should also account for spatial spillovers. For instance, 
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Schneider et al. (2021) demonstrated that the timing of pest population control by one 

farmer can influence the efficacy of neighboring farmers' damage abatement inputs. In this 

study, I incorporate spatial spillovers into the model, where upwind county j’s decision 

regarding participation in the cloud seeding program influences county i’s weather, such 

as less rainfall or hailstorms. The revised maximization problem is illustrated in equation 

(B4), and the marginal effect of cloud seeding participation on profit is shown in equation 

(B5).

max
𝑐𝑖𝑡

   𝜋𝑖𝑡 = 𝑝𝑦{𝑌1
𝑖𝑡(𝑍)[1 ― 𝐺𝑖𝑡(𝑊𝑖(𝑐𝑖𝑡, 𝑐𝑗𝑡))] ― 𝑝𝑧𝑍 ― 𝑝𝑐𝑐𝑖𝑡                         (B4)

𝑑𝜋𝑖𝑡

𝑑𝑐𝑖𝑡
= 𝑝𝑦𝑌1

𝑖𝑡(𝑍)( ― ∂𝐺𝑖𝑡

∂𝑊𝑖𝑡

∂𝑊𝑖𝑡(𝑐𝑖𝑡, 𝑐𝑗𝑡)
∂𝑐𝑖𝑡

) ― 𝑝𝑐  (B5)

In the damage control model, the damage control agent may not directly enhance crop 

production; in some cases, it might even lead to a reduction in crop production (Lichtenberg 

and Zilberman, 1986). For instance, pesticides may not directly improve crop yield but can 

reduce pests, resulting in better plant growth. However, excessive pesticide application can 

harm crop plants. Similarly, if cloud seeding is effective and spillover effect is not 

considered, then  
∂𝑊(𝑐𝑖𝑡)

∂𝑐𝑖𝑡
<0. However, if spillover effects are taken into consideration, the 

sign  
∂𝑊𝑖𝑡(𝑐𝑖𝑡, 𝑐𝑗𝑡)

∂𝑐𝑖𝑡
  is unknown; it could be either positive or negative. Based on this model, 

in the following section, the efficacy of cloud seeding and potential spillover effects are 

tested.
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Appendix C. Propensity Score Matching

The data used in the preceding estimations included all counties in Kansas. To ensure 

robustness, the analysis is revised to include counties adjacent to Kansas in Colorado and 

Oklahoma, forming control and comparison groups, and utilized a logit model to predict 

the probability of counties adopting the cloud seeding program.

To identify treated counties for the analysis, we utilized The initial analysis focused 

solely on data from 2002, a year with a relatively high number of adopting counties 

compared to other years. In the logit model, variables such as downwind status, GDD, SDD, 

and the Palmer Z index were used to estimate the probability of adoption. The main 

difference arises from using the Palmer Z index rather than the Dry and Wet variables 

specified in the Data section (Section IV). This decision stemmed from the fact that 2002 

experienced relatively dry conditions with lower moisture levels compared to normal 

conditions. Consequently, most of the Wet variables equated to zero, offering limited 

information due to the small sample size. Hence, we chose to utilize the Palmer Z index, 

the original variable employed in generating the Dry and Wet variables, in the logit model.

Based on the results of the logit model, we generated propensity scores for each 

county. Subsequently, we ranked each county by the propensity and matched one county 

that adopted the cloud seeding program to two counties that did not adopt the program but 

had similar propensity scores. In other words, within each matched group, these three 

counties exhibited similar tendencies to adopt the cloud seeding program. Consequently, 

we excluded counties that were not matched, as they might confound the results. After 

matching, 36 counties were included in the evaluation, primarily concentrated in the 

western part of Kansas, which is referred to as the West Kansas sample hereafter. In Figure 

C1, the counties shaded in orange indicate the West Kansas sample.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5104974

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure C1. Kansas and West Kansas sample counties
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Table C1. Crop damage indemnity (dollars per insured acre)

Total Kansas West KansasVariable hail drought flooding hail drought flooding hail drought flooding

Seed 0.469
(0.560)

-1.680
(3.207)

1.282*
(0.723)

0.332
(0.579)

-3.730
(3.269)

1.539*
(0.787)

0.607
(0.725)

1.377
(2.608)

1.107
(0.786)

UWseed 0.092
(0.796)

6.048
(4.556)

0.173
(1.027)

0.001
(0.818)

5.073
(4.614)

0.243
(1.111)

0.253
(0.999)

6.366*
(3.590)

0.241
(1.082)

Wet 0.146
(0.127)

-3.723***
(0.738)

2.264***
(0.164)

0.264*
(0.161)

-3.373***
(0.925)

2.517***
(0.218)

0.330
(0.265)

-2.301**
(0.953)

1.203***
(0.287)

Dry -0.991***
(0.191)

12.306***
(1.097)

0.797***
(0.246)

-0.790***
(0.233)

16.235***
(1.320)

0.803**
(0.317)

-0.979***
(0.374)

8.705***
(1.343)

0.449
(0405)

GDD 0.00008
(0.0003)

-0.001
(0.001)

-0.0006*
(0.0003)

0.0001
(0.0002)

-0.002
(0.002)

-0.001**
(0.0004)

-0.0001
(0.0006)

-0.004*
(0.002)

0.0004
(0.0007)

SDD 0.001
(0.001)

0.015**
(0.006)

0.001
(0.001)

0.001
(0.001)

0.022***
(0.007)

0.003
(0.002)

0.003
(0.002)

0.025***
(0.008)

-0.0008
(0.002)

County
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

R-square
within 0.125 0.476 0.310 0.114 0.547 0.329 0.190 0.563 0.116
between 0.063 0.001 0.030 0.002 0.073 0.081 0.094 0.142 0.015
Overall 0.077 0.422 0.230 0.081 0.510 0.231 0.134 0.508 0.100

*:10%, **:5%, ***:1% statistic significant. 
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Table C2. Cloud seeding effects (Total sample) 

Weather variables Crop loss ratio Crop productivity
Variable frequenc

y magnitude rainfall hail drought flooding Wheat Corn Sorghum

Seed -0.280
(1.161)

-0.047
(0.044)

0.056
(0.052)

0.268
(0.269)

0.159
(0.134)

0.534***
(0.163)

-0.700
(1.505)

16.215***
(3.925)

-3.440
(2.499)

UWseed 2.778*
(1.634)

0.102*
(0.062)

-0.085
(0.074)

-0.102
(0.381)

0.221
(0.189)

0.109
(0.235)

-2.948
(2.210)

4.413
(5.631)

-
11.021***

(3.521)

Wet 0.340
(0.263)

-0.001
(0.009)

0.294***
(0.012)

0.153**
(0.062)

0.092***
(0.031)

0.229***
(0.037)

-1.132***
(0.373)

1.239
(0.991)

3.006***
(0.666)

Dry -1.670***
(0.398)

-0.013
(0.015)

-0.132***
(0.018)

0.353***
(0.097)

0.577***
(0.048)

0.203***
(0.058)

-3.524***
(0.520)

-7.378***
(1.312)

-9.980***
(0.910)

GDD 0.0003
(0.0005)

0.00003
(0.00002)

0.0001***
(0.00002)

0.0002
(0.0001)

0.00003
(0.00006)

-0.0001
(0.00007)

-0.0005
(0.0005)

0.005***
(0.002)

0.004***
(0.001)

SDD 0.0009
(0.0021)

-0.0001
(0.0001)

-0.0003***
(0.0001)

-0.0005
(0.0005)

0.00006
(0.0003)

0.0006*
(0.0003)

0.003
(0.003)

-0.035***
(0.007)

-0.031***
(0.005)

County 
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time Fixed-
effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

R-square
within 0.164 0.103 0.599 0.130 0.454 0.158 0.390 0.457 0.651

between 0.0001 0.044 0.493 0.015 0.076 0.011 0.093 0.003 0.123
Overall 0.095 0.081 0.101 0.099 0.418 0.132 0.306 0.137 0.477

Observations 2,259 2,259 2,319 2,196 2,154 2,128 1,762 1,665 1,468
*:10%, **:5%, ***:1% statistic significant.
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Appendix D. 

Table D1. Net Benefit and Net Present Value of Counties Participating in the 

Cloud Seeding Program (2002–2016)

Net Present Value
County

Number of years  
participating in 
program during

2002-2016

Net benefit
(2002-2016)
(real 2002 
dollars)

Discount rate 
3.1%

Discount 
rate 3.9%

Finney 10 22,385,099 19,300,000 18,600,000
Gove 2 1,459,277 1,065,190 984,491
Grant 8 11,625,797 9,338,420 8,858,088
Gray 10 19,057,089 15,300,000 14,500,000

Greeley 6 11,344,974 8,027,018 7,364,672
Hamilton 11 10,271,209 8,280,079 7,855,697
Haskell 8 36,540,874 29,600,000 28,200,000
Kearny 13 12,153,677 10,000,000 9,580,517
Lane 14 -6,337,185 -5,135,528 -4,883,257
Scott 14 9,101,877 8,026,396 7,793,650

Stanton 6 15,862,281 12,500,000 11,800,000
Stevens 2 7,954,878 6,330,899 5,975,491
Wallace 2 1,976,468 1,597,694 1,515,924
Wichita 11 17,683,923 14,700,000 14,000,000

*Price is average price of each month of grain crops. The production gain and loss are based on the 
estimation of Table 3.

Table D2. Net Present Value of Cloud Seeding Program in Kansas

Net present value
(2002-2016)

Real Discount Rates 3.1% 3.9%
NPV (participating) -28,031,183 -29,149,102 

NPV (non-participating) 39,009,128 41,324,710 
Overall 10,977,945 12,175,608 
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